
NASA CONTRACTOR REPORT 177409 -

Software Maintenance in
Sci.entific & Engineexifis R ~ h m t s :
An Introduction & Guide.

{ N A S A - C B - 1 7 7 4 0 9) SOP'IRARE WAIPTENAUCE I N M88-12954
E C l E N T I F I C A N C E h G I N E E E I N G E N V I E O N H E N T S : A N
I h T B O D U C I T C N A N C GUIDE (Sterling Software)
27 p CSCL 09B u n c l a s

~ 3 1 6 1 0110673

David Wright

CONTRACT NAS2- 11555
February 1986

NASA CONTRACTOR REPORT 177409

SoftwareMaintenancein .
Scientific & Engineering Envhments:
An Introduction & Guide

David Wright
Sterling Software
1121 San Antonio Avenue
Palo A l t o , CA 94303-4380

Repared for

U n d e r Contract NAS2-11555
* AnEs e s e a r c h center

iudilui ai Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035

TABLE OF CONTENTS

1

2

3

4

4.1

4.2

4.3

4.4

4.5

4.6

5.

6.

7 .

a.

9.

10.

11.

12.

Summary

Introduction

Maintenance C the NASA Environment

What is there to Maintain?

Requirements Maintenance

Algorithm Maintenance

Design Maintenance

Program Maintenance

Data Maintenance

Documentation Maintenance

The Application t Host Hardware and Software
Dependencies

What Constitutes Failure?

Some reasons for Failure of vvWorkingvl Software

Who Should Perform Maintenance?

Maintenance: Quality Assurance

Maintenance: Techniques & Tools

Missing Documentation

Maintenance: IvDefensive Developmentv1

Appendix 1: Model Checklist for Owner's Maintenance

References

Guide

Pase

1

1

4

5

6

6

7

7

a

9

10

11

11

12

13

13

14

14

16

23

SOFTWARE MAINTENANCE IN

AN INTRODUCTION AND GUIDE
SCIENTIFIC AND ENGINEERING ENVIROmENTS:

1. Summary

The purpose of software maintenance techniques is addressed.

The aims of perfective, adaptive and corrective software
maintenance are defined and discussed within this
perspective. The consequences for maintenance within the
NASA research environment are discussed.

Areas requiring maintenance, and tools available for this are
listed, and suggestions for use made. Stress is placed on
the organizational aspect of maintenance at both the
individual and group level.

Particular emphasis is laid on the use of various forms of
documentation as the basis around which to organize.

Finally, suggestions are given for how to proceed in the
partial or complete absence of such documentation.

2. Introduction

In this report, maintenance is defined as:

Any activity involving additions to, alterations
mandated by system changes, or correction of,
software previously accepted by a user as
complying with requirements.

Far from being merely the correction of error, ltmaintenancen
has come to encompass three areas of activity: the
perfection, adaptation, or correction of existing code. The
meaning of these terms in this context is as follows:

Perfective maintenance is the modification of software to
reflect changes in specifications as the user's requirements
change.

Adaptive maintenance changes the software to reflect changes
in the programming environment, for instance changes to
hardware, system software, or some essential application
program such as a data-base, graphics or numerical analysis
package.

1

Finally we come to what is closest to the common usage of
maintenance: the correction of error to bring performance
into line with requirements.

The aim of software maintenance is surely to permit the
user continuous, unhindered access to properly working
software. A quick scan of a piece of software will often
give an experienced eye a fairly accurate idea of how easy
itls going to be to maintain. That this is so is
encouraging - it indicates that llmaintainabilityll isn't some
remote abstraction, but a recognizable characteristic of
software.

It is now clear that this I@signature@l of maintainable
software is the outcome of the style and techniques used to
create it. Maintainability in software results from the
application of a set of techniques involving modular design
and structured programming techniques. This is coupled with
a set of guidelines on the part of software maintainers and
their managers, designed to ensure uniformity of procedure
in assessing and making changes to software.

Maintenance techniques should have communication as their
main aim. Often though, the literature gives the impression
that the aim is the creation of an archive, with no
indication of how or by whom it might be used.

This report argues that by ignoring the unapproachability of
much documentation by the maintainer new to it, much of its
the potential usefulness is diminished. The loss stems from
the lack of focus or direction in the documentation. There
is no lack of detail: indeed, the detail is usually
overwhelming, and hence unusable to a newcomer without a
great deal of additional work.
usually acquired while creating the original software,
problems presented for maintenance will have little initial
meaning for the new maintainer. The effort to acquire this
background also represents time (cost to the customer!) and
frustration to the maintainer, who is eager to get started
on problems.

For lack of the background

The first recommendation is the creation of a IIProgrammersl
Primer" in parallel with the original development effort,
and whose continued currency would be a maintenance task.
Such a document would explain the scientific or engineering
content of the project at a level roughly that of a
Scientific American article. A glossary of terms and
abbreviations would be provided, and units of measurement
specified and explained. On the organizational side,
details would be provided of computers and languages used,
and data structures and directories in which software was

2

resident. Finally, fairly high-level structure charts, at
the large subsystem level, would orient the individual as to
areas of maintenance. The names of those from whom more
detailed information could be obtained should accompany the
structure charts.

To the objection that the creation of such a document would
take the time of expensive people, the answer is that the
total of this time would be far less than the aggregate time
wasted by successive generations of maintenance personnel
trying to uncover this material themselves. There is also a
high degree of probability that some such personnel would
fail to completely reinvent the wheel, but would feel
compelled to proceed with their maintenance effort anyhow.
This leads to error, additional maintenance needs, and so
on.

If the lack of an overall view and access to vital
background information constitutes one type of barrier to
the efficient transition between maintainers, another exists
at the level of each module.
recent maintainer to leave a record of the maintenance
status of each group of modules for which there was
responsibility. Details relevant to perfective, adaptive
and corrective maintenance effort, designed to make
accessible some of the day to day level of maintenance
experience, would be captured in a brief though clear manner
and made available to the next person with responsibility
for these modules.

A way is needed for the most

It is recommended that on leaving, each maintainer complete
a brief status report on the modules being worked on. This
would help continuity of effort.

A more general version of this technique is due to Molari
(1981), who has devised a means of producing an Owner's
Maintenance Guide f o r software. The Guide is produced by
answering a series of questions drawn from a model
checklist, reproduced with permission as Appendix 1 of this
document. The questions should be tailored to specific
projects: some additional ones will be suggested by the
context of each project.
answers to the questions should enable maintenance
programmers to locate the specific portions of the software
and documentation required to investigate a particular
problem.
software to be maintained. The person filling out the
checklist should be able to do so in under an hour.

The information provided by

Each checklist covers a major subsystem of the

It is strongly recommended that all three of these
techniques become accepted practice, since they permit the

3

maintenance task to be approached in a series of steps of
increasing detail, which avoids the confusion of
Ifinfomation overload" if one attempts to jump at once into
the middle of a complex situation.

3. Maintenance and the NASA Environment.

Glass and Noiseaux [1981] report that the relative amounts
of time spent on the three types of maintenance, industry
wide, are roughly:

Perfective: 62% User's needs change.
Adaptive: 20% Programming environment changes.
Corrective: 18% Errors of logic, design or coding.

It's worth considering how the NASA computing environment
affects software maintenance.

First, therels a great range of scope of projects, in both
time scale and computational demand.

At one extreme is a project involving a summer student
requiring access to a VAX and perhaps a specialized piece of
output hardware such as an image display.
it's unlikely that any software created will long outlive
the project. Essentially such a project is a training
exercise which also gives some help to a NASA staff member.
Whatever the development difficulties, there will be no
additional maintenance considerations.

In this case,

At the other extreme are long-term, large-scale projects
such as the wind tunnels, computational fluid dynamics,
flight simulators and space science projects such as the
Hubble space telescope and Pioneer.
demands are great and complex.

Here the computational

The large, long-term project involves two basic maintenance
problems: staff turnover and hardware change. The
development of adequate documentation forms the basis of an
Itinstitutional memory" to help new staff members, and is an
important element in addressing the staff change problem.
But given the lack of time or facility for formal training
of new staff members, very often all they have to go on is
whatever commentary there is in the code. All too
frequently, specially in the very long-term projects (twenty
or more years), the cumulative effect of undocumented or
poorly documented code has been to render it close to
unmaintainable, though some suggestions as to how to try are
in the last section of this report. Trying to discern the

4

original intent of the code is complicated by the accretion
of quick fixes and ingenious ways round the quirks of all
the systems the code has ever run on. Personnel, computers,
programming standards and techniques have all undergone
several generations of change in the interim.

An important difference between the NASA environment and
most, say commercial, computing environments is that for
many projects at NASA, change is the norm. There is
frequently no relevance to the notion of a "finished
product" towards which one is working and which, when
attained, will remain relatively stable for a long period.
Also, hardware change will be more frequent, and more
drastic, in a NASA-type situation.

Thus, when assessing the costs and cost-effectiveness of
maintenance, one should compare NASA with other research and
engineering environments rather than with traditional "data
processing" environments.

4. What is there to Maintain?

Each stage of the development process has a product, which
needs to be maintained to keep its usefulness.
such products is thus a list of items to be maintained:

A list of

- Requirements - Algorithms - Design . - Programs - Data - Documentation for all these
It is recommended that all documentation be stored in text-
file form, for ease of access, change and archiving via
routine backup. Appropriate file protection will guard
against inadvertant loss or overwriting.

It is recommended that all requests for change to any of
these be date stamped and signed, and confirmed with the
requestor before being acted on.

It is recommended that requests so confirmed are reviewed by
a change control group and assessed for feasibility in
principle, feasibility within given time constraint and
availability of maintenance staff.

It is recommended that requests for perfective, adaptive and
corrective maintenance be kept in separate but parallel

5

directories, with one individual having specific
responsibility as librarian.

It is recommended that any request for change of any kind be
entered in a Change Log, and that the log also note
subsequent actions on the request.

It is recommended that all programs written conform to User
or Developer programming standards as to modularity,
structure, and documentation.

4.1 Reuuirements Maintenance

Requirements should as necessary be reviewed with the end-
user to ensure that ambiguities and uncertainties are
resolved. The original and all subsequent, revised
requirements should be kept clearly separate, since it's
important to know which requirements changes correspond to
what software modifications. Sometimes an older set of
requirements needs to be re-implemented, perhaps at another
site on an older machine. Or perhaps errors are discovered
in some set of requirements, so it becomes important to
remove or change the corresponding code. A record should be
kept showing which modules address which requirements. This
will provide at least a pointer for maintainers.

4.2 Alaorithm Maintenance.

An algorithm for a particular purpose will result from the
design stage of the software development process.
Algorithms may be specially written for a particular project,
may be obtained from some source of relevant techniques, or
be a specialization of a general technique. In any case, the
maintenance concern is that they remain appropriate for
present purposes, which may have changed since the original
design. Hence the importance of documentation containing:

- Original requirements.

- Original specifications (if these were generated).

- Source of the algorithm.

- Modifications or specializations of off-the-shelf
software noted against specific requirements.

- Original design, expressed in a suitable pseudocode.

6

- Date-stamped notes of change requests, indicating
requestor and reason for change.

- Copies of responses to such requests, including
pointers to corresponding changes in the
implementation of the algorithm.

4.3 Desisn Maintenance.

Probably the most effective way of recording design is some
form of high-level pseudocode.
available, most of which look on the page not unlike the
computer language on which they will be implemented. Clear
indication should be given of which modules in the actual
programming language the designs correspond to.

There are many pseudocodes

4.4 Proaram Maintenance.

Our aims here are to ensure:

- Semantic correctness: does the code embody current
requirements?
it does; hence the importance of defining adequate
test data.
regression testing as needed.

There are no logical proofs of whether

Test data should exist to permit

- Compliance with software standards as to:
Modularity.
Structure.
Documentation: naming conventions for programs,

modules, identifiers; in-line
commentary; directory and file
structure, and backup procedures.

It needs to be clearly borne in mind that the only realistic
aim of software maintenance is to minimize error. It can no
more eliminate it altogether than medicine can eliminate
fatality from disease. Only the odds can be changed.

In order for program maintenance to proceed efficiently, the
following documents should be available:

- Requirements.
- Current specifications.
- Notes (formal Technical Memos as well as Itlab
notebookll type notes) of the original designer(s) and
developers.

7

- Indication as to software source, if obtained "off
the shelf".

- Location and justification for modifications to such
software.

- Relevant language and system manuals for the computer
on which the software is now run, and those from
which it has been ported, if any.

- Cross-reference listing of the most recent version,
which if adequately maintained will contain a
modification history.

- Test data used to verify past versions.
- A log of all past problems, tied to the specific
modules found at fault.

- An account of how these problems were resolved.
- A statement of directory structure, access rules and
- A set of the .user's software standards or (if none)

configuration control protocols f o r change.

those of the maintaining organization.

The approach to program maintenance is parallel in structure
to that of algorithm maintenance, and is addressed in the
same way - keeping clearly separate the three strands of
perfection, adaptation and correction. With programs, there
are the additional strands of explicit system dependence,
hardware and software, as maintenance considerations.

4.5 Data.

The only reason programs are written is to manipulate data.
This point is so commonplace as to be embarrassing to make,
but experience shows that the design of data structures
receives scant attention during the development phase,
considering its importance to run-time considerations such as
time loss due to unnecessary i/o interrupts. For each of
these areas of concern there is associated documentation to
maintain.

- Data structures: File and record structures;
- Scope of definition of variables in languages
permitting this;

8

4 . 6

- Data structure declarations: the location, type and
s i ze of identifiers set up by PARAMETER, COMMON, and
EQUIVALENCE statements and their definition
(initialization) via DATA statements.

- Data flow diagrams or their equivalent if available.
- Data bases. This term is used too widely to have
anything like a precise meaning. It could equally
refer to a ten year accumulation of experimental data
tapes, or to a specialized program for maintaining
large amounts of data on disks. But whatever your
project's usage, the need for maintenance is there!

Documentation

- Original requirements, specification and design
documents.

- Problem reports/complaints from the user.
- In-line commentary in code.

Each module should contain a standard header showing
module name, aim, explicit system dependencies,
language dialect, identifier declarations, and data
dictionary briefly defining the meaning and usage
(input, output or scratch) of each identifier. There
should also be a cumulative record of modifications,
giving brief reasons and name of author.

- Program Runners' Guide.
- Tutorial material.

As has be seen from the repeated references to the use of
documentation in the maintenance process, properly designed,
written and maintained documentation is THE key to success in
the maintenance effort!
emphasized however that unless the documentation itself is
kept current with changes to the software, maintenance will
become an extremely costly and unsatisfactory activity.

Indeed, there have been cases where reasonable but false
assumptions made for lack of relevant documentation have
resulted in the introduction of error where none was before.
Also, errors have been introduced by the use of plausible but
wrong documentation.

It cannot be too strongly

9

Any change to software, however well planned, has the
potential for introducing error. A basic reason is that even
the most skilled user
rate! A file being edited must be changeable - for worse as
well as better.

of a keyboard has a nonzero error

5. The Amlication t Host System Hardware and Software
Dependencies.

It is well known thht the system (computer/operating system)
under which most applications run both make possible and
limit what the applications are capable of. The list below
indicates some of the areas of dependency:

- Hardware dependencies, e.g.:
computer word length;
instruction set;
speed of execution;
hardware versus software
implementation of floating
point arithmetic;

- i/o devices available.
Hardware dependencies show up as maintenance problems when we
attempt to port software between computers. At once, certain
features of the source and target computers' hardware design
become important. For instance, real-time applications are
sensitive to instruction execution speed. Another such
feature is word length, which affects such issues as the
range and accuracy of numerical representation, and also the
internal representation of various kinds of data. A related
issue is how the bits within the word, however many there
are, are grouped. For instance, the CDC 7600 employed 60
bits to a word; the DEC VAX series uses 32. The CDC sub-
divided a word into ten six-bit character units; the VAX,
into four eight bit character units.

Another dependency is the order in memory in which bytes are
accessed within a word, even if the number of bits per word
is the same. If you're converting from a system that accesses
left to right to one which goes in the opposite direction,
then a utility is going be needed which reflects the order in
which bits read from one machine are interpreted on the
other.

- Operating system dependencies, e.g.:
System utility calls of any sort;

10

Use of command files to pass parameters to, or
otherwise control the running of programs.

non-ANSI standard language features provided by a
particular vendor, such as identifiers of more than
6 characters, and
LOGICAL*l data type in VAX FORTRAN.

- Compiler dependencies, e.g.:

A decision will be required on whether to exploit these, or
to remain strictly within ANSI FORTRAN.
may yield ready portability, but at the cost of the
advantages afforded by many of the non-standard features.
How often is porting envisaged?
non-standard features? Again, costs and benefits can be
weighed.

Strict conformity

How helpful are some of the

To some extent this kind of maintenance can be anticipated by
designing software to be "portable", that is, containing
minimal explicit dependence on a particular computer,
operating system release or compiler. Any apparently
unavoidable remaining dependencies should be noted clearly in
the in-line commentary and in the external documentation.

- File handling dependencies.
- Maintenance tools provided by the computer maker or
outside vendors.

6. What Constitutes "failuretv?

After acceptance by the user, any report of unusual or
unacceptable output constitutes a failure - though it may be
of communication (say the result of a poorly written
operator's manual) rather than a flaw in design or code.

7. Some Reasons for Failure of "workincP software

- Unanticipated change in input data.
- Hardware failure.
- Upgrade or other hardware change in
- Change in existing system software, e.g. new operating

existing system.

system release.

- Any allegedly ''transparentii change to either hardware
or software.

11

- Failure of direct portability to system other than
that on which developed.

- IIHidden" dependencies, e.g. changes to any other system
which provides input data to a program. If, as is often
the case in NASA, the input is provided by another
organization, then it is important to be able to
contact them. Additionally, if possible, knowledge of
relevant aspects of their code, such as data editing
ranges, may be needed.

- Code rendered brittle or fragile from too many earlier
"quick f ixll undocumented patches.

8. Who should Derform Maintenance?

The maintenance function is a crucial one to the effective
use of some very expensive equipment serving highly sensitive
areas, such as air traffic control, automated chemical plant
or defense communication network.
software was accepted in, it is up to the maintainers to make
it work as it should.
since it involves being able to follow not only what should
happen, but in what ways it has failed to do so. Technically
it is a difficult area to work in; as one is always dealing
with problems, it can be very stressful as well. As it will
look back in terms of systems and languages in use, rather
than being on the leading edge of development, strong
inducements may be needed to attract the necessary talent.
This will tend to make it more expensive than development
work, but is unavoidable.

Whatever shape the

This is not a task for beginners,

Maintenance must be made an attractive area in which to
work, attracting the good people essential to do it justice,
or it will become an area of nagging drudgery shunned and
dreaded by all, and hence staffed essentially by junior-level
conscripts. This will result in increased expense, if only
because more people will work longer to
ends, with a much lower likelihood of adequate work.

attempt the same

12

9. Maintenance: Quality Assurance

Besides the importance of accurate, complete documentation,
there are two keys to quality assurance in the maintenance
area. The first is to minimize the amount of maintenance
required. There is always the chance that some small change
of apparently local scope will have unforeseen side effects.
Error will be introduced elsewhere where formerly there was
none.
maintenance task, the documentation has been misinterpreted.
One way to detect if such error has been introduced is to
perform regression testing whenever change is made.

The formation of a maintenance quality circle, involving
users as well as software personnel, may also be found
helpful.
producers of software to gain insight into each other's
problems and difficulties.
of ideas and information.

This is possible in particular if in starting a

This has the effect of encouraging the users and

It also encourages the exchange

The second key is the personnel doing the maintenance.
was discussed above.

This

10. Maintenance: Techniaues and Tools.

Many of the tools useful in maintenance are those used in
development, since in many ways maintenance is the
continuation of development by another name.
on the carefully controlled introduction of any change, and
care at all times to avoid inadvertant change to files.

Design reviews and walkthroughs are familiar development
tools, which work just as well in a maintenance environment.

The emphasis is

The same is true of code inspections.

Protection against inadvertant change to files
by configuration control.
file creation, access and change is managed. There are
commercially available packages designed to establish
configuration control, but a particular project may find it
more desirable to develop its own. However, the
effectiveness of configuration control depends crucially on
members of the development (and later maintenance) personnel
routinely following whatever guidelines are established in
this area.

is provided
This is the technique by which

It is recommended that all these techniques be employed
during the maintenance as well as the development phase of
the software life cycle.

13

A difficult question of maintenance is to decide when to
rewrite from scratch rather that fix what exists.
Empirically, it seems that if 50% to 7 5 % of the modules in a
system are in need of maintenance, then a complete
restructuring is in order. For an individual module, if 15%
or more is in need of change, rewriting is in order.

11. Missina Documentation

Given the considerable emphasis on documentation as the basis
for maintenance, what does one do in its near absence? The
first suggestion that comes to mind is simply to rewrite, but
this assumes the original requirements are accessible. In
their absence, all that can be done is a painstaking
reconstruction of the current state of the system from
available listings and directories of files.

The first thing to do is establish if the listings correspond
to current source on object code.
examining the dates of file creation in many instances.
Hopefully source code, or at least listings, will be found
for all object modules.
whatever commentary exists in the code, and attempt to
understand how and what it's doing. The help of earlier
developers or maintainers should be enlsited if they are
available. Work areas should be scoured for old notebooks or
anything which may be of use. Users and former users may be
of help in this reconstructive effort.

This can be done by

It is then necessary to take

In summary, find out what there is, and if possible what it
does. The situation will be serious but may not be
desperate. The cost of doing this may be considerable, but
apart from abandoning the project for which the software was
developed, there's not much else to be done.

12. Maintenance: IIDefensive DeveloDment" .
If the occurrence of the word ltdevelopmentll seems strange in
the context of a document on maintenance, consider that in a
very real sense development never stops. In a formal or
legal sense, of course, development could be said to stop at
the point of first acceptance by the customer of the software
as working. But software truly isn't like other products in
this regard, partly because it's much more flexible by
nature. If a company buys a digital voltmeter, the
manufacturer isn't going to be asked to turn it into a
compact disk player! Yet the cumulative changes to
originally quite modest software can completely change the

14

product. It is in this light that the term defensive
development is used.
how can the demands that it will put on the existing software
be met?
will be mitigated if you anticipate that:

Knowing that change will be required,

Some of the adverse effects of unpredictable change

- People will depart projects at short notice.
Develop a checklist to be turned in by the department.

checklist should include:

A list of modules for which the individual was
responsible, and indication where these lie in the
hierarchy of module dependency.

Any working notes on current modifications as yet
incomplete, including the requestor's new
requirements.

Cross-reference listings of current modules, and
indication as to what module(s) call them.

Library listings showing current location of
source, object and linked code.

Logs indi.cating completion of documentation of
previously modified modules.

Ensure that the checklist is indeed completed.
for the final paycheck and handshake, if need be!

Exchange it

- Computers will come and go - sometimes with amazingly
little notice to your particular project, which may not
loom large in the vision of those responsible for
choosing the next machine. Will you, for instance, be
stranded with fifteen years of data tapes recorded at
a density unreadable by the new machine's drives? An
explicit list of machine dependencies would help avert
little surprises like this. Your group's concerns with
a proposed choice of machine or peripheral grouping are
more likely to be attended to if accompanied by a list
of concrete reasons for alternatives.

- Of course, with new machines come new operating
systems, linkers and compilers. Again, an awareness of
dependencies allows one to plan ahead. Helpful
manufacturers will continue to upgrade operating
systems. What vulnerabilities has your software to new
releases? They lie in the direction of system calls,
command file techniques and file management systems.

15

APPENDIX I

MODEL CHECKLIST FOR PROGRAM MAINTENANCE GUIDE

In responding to the checklist, please:

0 Brief.

0 Be accurate.

0 Be specific.

0 Define locations in the software by module name, if
applicable.

0 Please specify any other documents where this
information may be found. If possible, specify the
section.

16

1. MAINTENANCE DUE TO SYSTEM SOFTWARE MAINTENANCE

1.1 If this software has to be
recompiled/assembled, how should it be done
(e.g. commands or catalogued procedures to be
used) ?

1.2 If this software has to be re-linked, how
should it be done?

1.3 If this software has to be moved to another
similar machine, how should it be done?

1.4 What parts of the operating system affect this
software aside from the compiler/assembler and
linker (e.g. data base/data communications
monitors, device drivers) ?

1.5 Are any software Ilpackagesll used (e.g., sort
routines)?
system release?

Are they specific to a certain

1.6 Are there any backups to the software or data
files? Should any be done regularly?

17

2. MAINTENANCE DUE TO SYSTEM HARDWARE MAINTENANCE

2.1 What peripherals are required by this software?

0 Terminal

0 Printer

0 Digital tape

0 Other

2.2 For each peripheral, please indicate:

0

0

0

0

0

Special features the software relies on, or
special hardware models or types it relies
on.

Whether a different model could be
substituted without affecting the software.

What,software modules perform 1/0 to the
peripheral (or %nanytl).

What the software does if the peripheral is
not ready or is missing (e.g., messages,
abort, wait, etc.) .
What is the minimal hardware configuration
on which this program will run (memory,
peripherals, disk storage space, etc.)?

18

3. MAINTENANCE DUE TO OPERATIONAL PARAMETERS
(REAL TIME ENVIRONMENT)

3.1

3.2

3.3

3.4

3.5

3.6

3.7

How are logical unit numbers assigned for the
peripherals? How would they be changed?

Are any peripherals logically I1attached1l for
sole use by this program?
How could this be changed?

Are any disk files used by this software?
Where are the names stored in the program?
Where are the formats described (specify
document, if applicable)? Which software
modules do the I/O?

By which module?

What would you do if the program were modified
and became too large?

Are there any speed requirements that are met
by the program with a small margin of safety?
What would you do if the program were modified
and no longer met these requirements?

Are there any internal or external parameters
that can be changed to I1fine-tune1* the
operation of the program? (Names, locations)

What is the fastest or most efficient way to
run the program (e.g., how to set parameters,
how to input data)?

19

4. MAINTENANCE DUE TO SOFTWARE STRUCTURE

4.1

4.2

4 . 3

4.4

4.5

4 . 6

4 . 7

4 . 8

Where is most internal data initialized?

Are data, variables, or arrays used for more
than one purpose? Where?

Where does the program begin and exit? (Module
names)

What are the largest arrays? Where are most
internal tables? (Names, sizes, modules names)

What language features are relied upon that are
ANSII-standard or that do not follow local
standards? (See Appendix for list of non-ANSI1
features.)

Are there any diagnostic or debugging features
built into the software? If documented
elsewhere, please specify the document.

Where are input parameters checked for range
and consistency? How could these restrictions
be changed? How could a new parameter be
added?

Where is most of the time spent in the program?
(Module name, section)

20

5. MAINTENANCE DUE TO EXTENSIONS

5.1 What extensions or modifications would you
suggest or consider for this software?

5.2 What extensions or modifications have others
suggested to you for this software?

5.3 For each change listed above, please classify
it as:

auick (1/2 week),

medium (1/2 month) , or
lonq (more than 1 month)

Also classify it as:

easy (can be done by anyone who knows the
language),

moderately hard (would take some study of most of

complex (need to understand details of linkage to
the software internally), or

operating system, drivers or hardware)

21

6. OTHER MAINTENANCE

6.1 What other kinds of maintenance do you think
may be required the most? Please include
periodic maintenance, extensions, corrections
as a result of experience, etc.

2 2

REFERENCES

Glass, R. and Noiseaux, R.: Software Maintenance Guidebook,
Prentice - Hall 1981

Molari, R.: Producina an Owner's Maintenance Guide,
Informatics Inc. 1981

Federal Information Processing Standards Publication (FIPS)
Publication 106: Guideline on Software Maintenance,

U.S. Department of Commerce 1984

23

I
e. w o m q Orcnlaa ~ l m md *bb..

1121 San Antonio Avenue
Palo A l t o , CA 94303-4380

Sterling Sofware

c

10. wat unil wo.
a 7 0 7
11. of Gnm Ib.
NAS2-USSS
la. tw of lkom md hd brrmd

r

12 bDrraln0 4 - w Wlm a *ddrrp

National AeroMutics & space AEhninistration I- n, DC 20546

hbffett Field, CA 94035
(415) 694-6036 or ETS 448-6036

16 Abvm

The purpose of software maintenance technic_ues . isbddressed.

DE aims of perfective, adapbve and corrective s o f m e rrrainteMnce are
defined and discussed w i t h i n this perspective.
nance w i t h i n the NASA research e n v i r o m t are discussed.

-1s available to the main&er are listed, and suggestions for use made.
Stress is placed on the organizational aspct of mintenance a t both the
i n d i v i d d and group level.

Particular enphasis is laid on the use of various fonns of docurwtation as
the basis around which to organize.

Finally, suggestions are given for how to proceed in the partial or
caplee absence of such m t a t i o n .

Ihe cansequences for mainte-

17 Urv W a d , (sugpnd Or *vmor(rJ J

software maintenance,
quality assurance

In. Omr~butla Smtmnont

Unclassified: Unlimited

Subjec t category 061.

